Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Soot Particle Size Distribution~A Joint Work for Kinetic Modelling and Experimental Investigations

2005-09-11
2005-24-053
The intention of the presented work was to develop a new simulation tool that fits into a CFD (computational fluid dynamics) workflow and provides information about the soot particle size distribution. Additionally it was necessary to improve and use state-of-the-art measurement techniques in order to be able to gain more knowledge about the behavior of the soot particles and to validate the achieved simulation results. The work has been done as a joint research financed by the European Community under FP5.
Technical Paper

Sound - Design for Motorcycles Influence of Different Parameters on the Sound

2006-11-13
2006-32-0084
Beside performance, handling and styling the sound characteristic of a motorcycle is a very important feature for the acceptance of the product by the customers and therefore the commercial success of a new product. Creating a special brand sound becomes more and more important to create a product that can be easily distinguished from competitor products and is therefore considered to be something special. On the other hand the legal limits in terms of pass - by noise allow for a very little margin for the creation of a special sound. During the product sound design phase the different perceptions of the rider wearing a helmet and pedestrians have to be considered. In passenger cars sound design has been known for a long time and the creation of a special sound for the driver inside the passenger compartment can be achieved with little influence on the exterior noise and therefore on the noise which is limited by legislation.
Technical Paper

System Validation with Battery-in-the-Loop Configuration Using a Virtual Testing Toolchain

2024-01-16
2024-26-0116
Today, the battery development process for automotive applications is relatively decoupled from the vehicle integration and system validation phase. Battery pack design targets are often disregarded at very early development phases even though they are thoroughly linked to the vehicle-level requirements such as performance, lifetime and cost. Here, AVL proposes a methodology guided by virtual testing techniques to frontload vehicle-level validation tasks in the earlier phase of battery pack testing. This paper focuses on the benefits of the methodology for both battery suppliers and automotive OEMs. Applications will be explained, based on a modular virtual testing toolchain, which involves the simulation platform and models as well as the generation of model parameters and test cases.
Technical Paper

TC GDI Engines at Very High Power Density — Irregular Combustion and Thermal Risk

2009-09-13
2009-24-0056
Gasoline direct injection and turbocharging enable the progress of clean and fuel efficient SI engines. Accessing potential efficiency benefits requires very high power density to be achieved across a broad rpm range. This imposes risks which in conventional engines are rarely met. However, at torque levels exceeding 25 bar BMEP, the thermal in-cylinder conditions together with chemical reactivity of any ignitable matter, require major efforts in combustion system development. The paper presents a methodology to identify and locate sporadic self ignition events and it demonstrates non contact surface temperature measurement techniques for in-cylinder and exhaust system components.
Technical Paper

The Application of a New Software Tool for Separating Engine Combustion and Mechanical Noise Excitation

2007-05-15
2007-01-2376
The optimization of engine NVH is still an important aspect for vehicle interior and exterior noise radiation. To optimize the engine noise / vibration contribution to the vehicle, a complete understanding of the excitation mechanism, the vibration transfer in the engine structure and the radiation efficiency of the individual engine components is required. Concerning the excitation within the engine, a very efficient analysis methodology for the combustion- and mechanical excitation within gasoline and diesel engines has been developed. Out of this methodology a software tool has been designed for a fast, efficient and detailed evaluation of the combustion- and mechanical excitation content of total engine noise. Recently this software tool has been successfully applied in engine NVH optimization work for defining the best optimization strategies for engine NVH reduction and noise quality improvement especially with respect to combustion excitation.
Technical Paper

The Effect of Different Air Path Based ATS Thermal Management Strategy on a Non- EGR Medium Duty Diesel Engine’s Performance and Emissions

2024-01-16
2024-26-0038
The major objective of this paper is to develop thermal management strategy targeting optimum performance of Selective Catalytic Reduction (SCR) catalyst in a Medium Duty Diesel Engine performing in BS6 emission cycles. In the current scenario, the Emissions Norms are becoming more stringent and with the introduction of Real Drive Emission Test (RDE) and WHTC test comprising of both cold and hot phase, there is a need to develop techniques and strategies which are quick to respond in real time to cope with emission limit especially NOx. SCR seems to be suitable solution in reducing NOx in real time. However, there are limitations to SCR operating conditions, the major being the dosing release conditions which defines the gas temperature at which DEF (Diesel Exhaust Fluid) can be injected as DEF injection at lower gas temperatures than dosing release will lead to Urea deposit formation and will significantly hamper the SCR performance.
Technical Paper

The Effect of Fuel Specifications and Different Aftertreatment Systems on Exhaust Gas Odour and Non-Regulated Emissions at Steady State and Dynamic Operation of DI-Diesel Engines

1999-10-25
1999-01-3559
Diesel exhaust gas contains low molecular aliphatic carbonyl compounds and strongly smelling organic acids, which are known to have an irritant influence on eyes, nose and mucous membranes. Thus, diesel exhaust aftertreatment has to be considered more critically than that of gasoline engines, with respect to the formation of undesired by-products. The results presented here have been carried out as research work sponsored by the German Research Association for Internal Combustion Engines (FVV). The main objective of the three year project was to evaluate the behaviour of current and future catalyst technology on the one hand (oxidation catalyst, CRT system, SCR process), and regulated and certain selected non-regulated exhaust gas emission components and exhaust gas odour on the other hand.
Technical Paper

Thermal Mechanical Fatigue Simulation of Cast iron Cylinder Heads

2005-04-11
2005-01-0796
The requirement for increased power and reduced emission and fuel consumption levels for diesel engines has created very stringent demands on the cylinder head design. In current engine development programs it is often observed that the limiting design factor is given by the thermal mechanical fatigue strength of the cylinder head. Design iterations resulting from durability testing are often necessary due to the lack of adequate simulation techniques for prediction thermal mechanical fatigue (TMF) failure. A complete lifetime simulation process is presented in this paper with emphasis on a newly developed material model for describing the constitutive behavior of cast iron (i.e. gray cast iron and compacted graphite iron) under thermal cycling. The material model formulation is based on a continuum-damage-mechanics (CDM) approach in order to account for the tension / compression anomaly of cast iron.
Technical Paper

Thermal Propagation of Li-Ion Batteries: A Simulation Methodology for Enhanced and Accelerated Virtual Development

2022-10-05
2022-28-0101
The safety of BEVs in driving, charging and parking condition is essential for the success of electrification in automotive industry as well as key driver of any future development of Li-Ion HV battery. AVL has developed a unique simulation approach in which the multi-physical behavior of the single cell in thermal runaway is modelled and applied to module, pack or vehicle level. In addition and beside this cell behavior, various more physical phenomena during thermal propagation on pack level are considered and predicted by the simulation method: component melting, ignition and flammibilty of venting gas and HV failures.
Journal Article

Three-Way Catalyst Light-off During the NEDC Test Cycle: Fully Coupled 0D/1D Simulation of Gasoline Combustion, Pollutant Formation and Aftertreatment Systems

2008-06-23
2008-01-1755
The introduction of more stringent standards for engine emissions requires a steady development of engine control strategies in combination with efforts to optimize in-cylinder combustion and exhaust gas aftertreatment. With the goal of optimizing the overall emission performance this study presents the comprehensive simulation approach of a virtual vehicle model. A well established 1D gas dynamics and engine simulation model is extended by four key features. These are models for combustion and pollutant production in the cylinder, a model for the conversion of pollutants in a catalyst and a model for the effect of manifold wall wetting and fuel evaporation. The general species transport feature is linking these model together as it allows to transport an arbitrary number of chemical species in the entire system. Finally this highly detailed engine model is integrated into a vehicle model.
Technical Paper

Time-Domain Simulation Approach for the Electromagnetically Excited Vibrations of Squirrel-Cage Induction Machine Drives under Pulse-Width Modulated Supply

2022-06-15
2022-01-0932
In this paper, the multi-physical simulation workflow from electromagnetics to structural dynamics for a squirrel-cage induction machine is explored. In electromagnetic simulations, local forces and rotor torque are calculated for specific speed-torque operation points. In order to consider non-linearities and interaction with control system as well as transmission, time-domain simulations are carried out. For induction machines, the computational effort with full transient numerical methods like finite element analysis (FEA) is very high. A novel reduced order electro-mechanical model is presented. It still accounts for vibro-acoustically relevant harmonics due to pulse-width modulation (PWM), slotting, distributed winding and saturation effects, but is substantially faster (minutes to hours instead of days to weeks per operation point).
Technical Paper

Tool Based Calibration with the OBDmanager

2010-04-12
2010-01-0249
At the moment the documentation of failure inhibition matrices and the fault path management for different controller types and different vehicle projects are mainly maintained manually in individual Excel tables. This is not only time consuming but also gives a high potential for fault liability. In addition there is also no guarantee that the calibration of these failure inhibition matrices and its fault path really works. Conflicting aims between costs, time and fault liability require a new approach for the calibration, documentation and testing of failure inhibition matrices and the complete Diagnostic System Management (DSM) calibration. The standardization and harmonization of the Diagnostic System Management calibration for different calibration projects and derivates is the first step to reduce time and costs. Creating a master calibration for the conjoint fault paths and labels provides a significant reduction of efforts.
Technical Paper

Turbocharging the DI Gasoline Engine

2000-03-06
2000-01-0251
Regarding concepts for naturally aspirated engines, the high potential for fuel economy of Gasoline Direct Injection can only partially be utilized within the constraints of current or future emission legislation like EURO III / IV or LEV/ULEV. Instead of an expected improvement of 20 - 25 % currently only 10 - 15% can be obtained by the engine alone without vehicle optimizations considering all limitations of high volume production. A detailed analysis reveals concrete measures for further improvement. The application of DI gasoline technology clearly favors the combination with other fuel efficient technologies like downsizing by turbocharging and the application of a variable effective compression ratio by intake valve timing variation. Using the flexibility of direct gasoline injection some deficiencies of these technologies can be eliminated.
Technical Paper

Two-Cylinder Gasoline Engine Concept for Highly Integrated Range Extender and Hybrid Powertrain Applications

2010-09-28
2010-32-0130
The demand for improved fuel economy and the request for Zero Emission within cities require complex powertrains with an increasing level of electrification already in a short-termed timeframe until 2025. According to general expectations the demand for Mild-Hybrid powertrains will increase significantly within a broad range of implementation through all vehicle classes as well as on electric vehicles with integrated Range Extender (RE) mainly for use in urban areas. Whereas Mild Hybrid Vehicles basically use downsized combustion engines at current technology level, vehicles with a high level of powertrain electrification allow significantly different internal combustion engine (ICE) concepts. At AVL, various engine concepts have been investigated and evaluated with respect to the key criteria for a Range Extender application. A Wankel rotary engine concept as well as an inline 2 cylinder gasoline engine turned out to be most promising.
Technical Paper

ULEV Potential of a DI/TCI Diesel Passenger Car Engine Operated on Dimethyl Ether

1995-12-01
952754
The paper describes a feasibility test program on a 2 liter, 4 cylinder DI/TCI passenger car engine operated on the new alternative fuel Dimethyl Ether (DME, CH3 - O - CH3) with the aim of demonstrating its potential of meeting ULEV emissions (0.2 g/mi NOx in the FTP 75 test cycle) when installed in a full size passenger car. Special attention is drawn to the fuel injection equipment (FIE) as well as combustion system requirements towards the reduction of NOx and combustion noise while keeping energetic fuel consumption at the level of the baseline DI/TCI diesel engine. FIE and combustion system parameters were optimized on the steady state dynamometer by variation of a number of parameters, such as rate of injection, number of nozzle holes, compression ratio, piston bowl shape and exhaust gas recirculation.
Technical Paper

Using Simulation and Optimization Tools to Decide Engine Design Concepts

2000-03-06
2000-01-1267
To meet the future demands on internal combustion engines regarding efficiency emissions and durability all design parameters must be optimized together. As a result of progress in material engineering fuel injection technology turbo charging technology exhaust gas after treatment there arise a multiplicity of possible parameters, such as: design parameters (compression ratio, dimensioning depending on peak firing pressure and mean effective pressure), injection system (rate shaping, split injection, injection pressure, hole diameter), air management (turbo charging with or without VTG, EGR rate) combustion optimization (timing, air access ratio). The interaction of all these parameters can not be over-looked without simulation and optimization tools. This is valid for the concept layout, the optimization and the application process later on.
Technical Paper

V6-SUV Engine Sound Development

2009-05-19
2009-01-2177
This paper describes the development and achievement of a target engine sound for a V6 SUV in consideration of the sound quality preferences of customers in the U.S. First, a simple definition for engine sound under acceleration was found using order arrangement, frequency balance, and linearity. These elements are the product of commonly used characteristics in conventional development and can be applied simply when setting component targets. The development focused on order arrangement as the most important of these elements, and sounds with and without integer orders were selected as target candidates. Next, subjective auditory evaluations were performed in the U.S. using digitally processed sounds and an evaluation panel comprising roughly 40 subjects. The target sound was determined after classifying the results of this evaluation using cluster analysis.
Technical Paper

Virtual Optimization of Vehicle and Powertrain Parameters with Consideration of Human Factors

2005-04-11
2005-01-1945
The rapidly growing complexity and the growing cross linking of powertrain components leads to longer development times, especially in the vehicle calibration process. The number of systems which need to be fitted to each other and the number of parameters to be calibrated in the particular systems are increasing tremendously. The extensive use of simulation promises to reduce the calibration effort by providing pre-optimized parameter sets. This paper describes a new simulation methodology by the interlinking of advanced vehicle simulation and evaluation tools, in particular the AVL-tools CRUISE, VSM and DRIVE. This methodology allows to semi automatically pre-optimize powertrain and vehicle parameters before hardware is involved. So far the pre-calibration of vehicle and powertrain parameters by simulation was not satisfying because of the missing of a reliable evaluation tool for the produced simulation results.
X